
QUICstep: Evaluating connection migration based QUIC
censorship circumvention

Seungju Lee
seungjulee@princeton.edu

Princeton University

Mona Wang
monaw@princeton.edu
Princeton University

Watson Jia
watsonj@alumni.princeton.edu

Princeton University

Qiang Wu
gfw.report@protonmail.com

GFW Report

Henry Birge-Lee
birgelee@princeton.edu
Princeton University

Liang Wang
lw19@princeton.edu
Princeton University

Prateek Mittal
pmittal@princeton.edu
Princeton University

Abstract
Internet censors often rely on information in the first few packets of
a connection to censor unwanted traffic. With the rise of the QUIC
transport protocol, prior work has suggested the method of using
QUIC connection migration to conceal the first few handshake pack-
ets using a different network path (e.g., an encrypted proxy channel).
However, the use of connection migration for censorship circum-
vention has not been explored or validated in terms of feasibility
or performance. We bridge this gap by providing a rigorous quan-
titative evaluation of this approach that we name QUICstep. We
develop a lightweight, application-agnostic prototype of QUICstep
and demonstrate that QUICstep is able to circumvent a real-world
QUIC SNI censor. We find that not only does QUICstep outperform
a fully encrypted channel in diverse settings, but also that it can
significantly reduce traffic load for encrypted channel providers.
We also propose using QUICstep as a tool for measuring QUIC
connection migration support in the wild and show that support
for connection migration is on the rise. While as of now QUIC and
connection migration support is limited, we envision that QUICstep
can be a useful tool for the future where QUIC is the de facto norm
for the Internet.

Keywords
Censorship circumvention, QUIC, Connection migration

1 Introduction
As the Internet has become an indispensible tool in our lives, govern-
ments concurrently seek to expand censorship programs in a race
to control our access to information. Access Now’s 2024 data shows
that network disruptions are not only occurring more frequently,
but also across more countries [47]. The proliferation of commodity
network devices that can perform deep packet inspection (DPI) has
made scalable network censorship available to a wider range of

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies YYYY(X), 1–16
© YYYY Copyright held by the owner/author(s).
https://doi.org/XXXXXXX.XXXXXXX

governments and ISPs [55]. Well-established censorship regimes,
such as China’s Great Firewall (GFW) and Russia’s TSPU, continue
to deepen their methods for blocking network connections and
identifying circumvention technologies [28, 29, 74].

From previous studies of censorship systems in the wild, the
vast majority of connections, including fully encrypted connec-
tions, are filtered based on information in the handshake packets.
For example, SNI-based detection is so critical to censorship [15]
that censors began prematurely blocking connections using the
encrypted SNI extension as early as 2020 [10]. Similarly, the GFW
only prioritizes the first few packets of a connection when deciding
whether to exempt it from blocking [70]. Censorship measurement
platforms such as OONI and Censored Planet leverage this to mea-
sure censorship at a global scale by primarily sending handshake
probes [1, 54]. Ultimately, the handshake is critical in providing
censors with sufficient connection metadata to make a judgment
on whether to block the rest of the connection.

Hiding the handshake from the censor or bootstrapping the
connection via another channel is key to circumventing handshake-
dependent censorship in practice. In this line, Wang et al. have sug-
gested that connection migration can be used to circumvent state-
less censorship of QUIC by splitting handshake and non-handshake
packets across different network paths [64]. Connection migra-
tion is a notable feature of QUIC that allows connections to be
maintained while the IP address or port of endpoints change. By
transmitting only handshake packets through a censorship-resilient
channel (e.g. VPN), users can minimize the performance overhead
and load incurred by the censorship-resilient channel while enjoy-
ing the benefits of circumventing censorship.

However, prior work only briefly suggests this censorship cir-
cumvention scheme and leaves unanswered critical questions about
its design, implementation, practicality, and quantitative perfor-
mance benefits.

Contributions. We name this approach QUICstep and seek to
understand its feasibility and performance: First, are web servers
compatible with QUICstep? Second, can QUICstep effectively
circumvent deployed censors? Third, what is the quantitative
performance impact of using QUICstep? To address these ques-
tions, we first define a clear threat model (§3.1) that focuses on the

1

https://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXX.XXXXXXX

Proceedings on Privacy Enhancing Technologies YYYY(X) Seungju Lee, Mona Wang, Watson Jia, Qiang Wu, Henry Birge-Lee, Liang Wang, and Prateek Mittal

behavior of deployed censors that use simple and lightweight mech-
anisms (e.g., stateless behavior) over comprehensive but complex
mechanisms. We then develop a lightweight, open-source proto-
type of QUICstep (§3.2) that enables efficient path migration in a
real-world web browsing setting. Our implementation is available
at https://github.com/inspire-group/QUICstep. Using this imple-
mentation, we perform comprehensive evaluations to demonstrate
the effectiveness and performance of QUICstep.

We successfully use QUICstep to circumvent active QUIC-SNI
censorship in the wild, showcasing its effectiveness against real-
world deployed censors who leverage stateless detection techniques
(§4.3). While more sophisticated censors could employ stateful
traffic analysis to detect QUICstep, this may increase censor’s cost;
we discuss this possibility and tradeoff in a more thorough security
analysis of QUICstep (§5).

We demonstrate the performance benefits of QUICstep across
a wide range of experiments. We use the term handshake channel
to describe the secure tunnel through which a QUICstep client
performs the handshake (§3.1.1). Compared to completely relying
on the handshake channel for all traffic, QUICstep can reduce page
load time by up to 84%, and load on handshake channel providers
by a median of 93%. The performance gain of QUICstep becomes
more pronounced when the handshake channel is operating under
practical limitations, such as bandwidth limits. QUICstep could be
used to reduce load on handshake channel providers, such as VPNs
or other censorship circumvention tools.

For QUICstep to be practically useful, the website must support
both QUIC and connection migration, which currently presents
a bottleneck for widespread use of such techniques. Leveraging
QUICstep, we conduct a large-scale measurement of connection mi-
gration support in the wild over a three-month period, identifying
a small but nontrivial number of QUIC websites that are compati-
ble with QUICstep. While support for both QUIC and connection
migration is currently limited, the support is also on the rise: the
number of websites that partially support connection migration
increased by 20% during our measurement period of 3 months. This
shows promise for QUICstep becoming a useful tool in the future.

2 Background and related work
QUIC is a transport layer protocol based on UDP and supports
multiplexing of application-layer data streams [32]. QUIC was de-
veloped to improve the performance of web applications compared
to TCP+TLS and is the basis for HTTP/3. The meteoric rise of QUIC
is likely to continue as HTTP/3 has been standardized as an RFC [8].
All major browsers and around 22% of top 1 million websites already
support QUIC based on our recent measurement (§4.2).

QUIC provides a variety of network performance features. For
instance, by rolling together the QUIC and TLS handshake it elimi-
nates a handshake round-trip [57]. A critical performance feature
for our work is connection migration, which enables QUIC connec-
tions to persist across multiple network-layer sessions.

Connection migration. QUIC utilizes a set of connection identi-
fiers rather than the IP address and port tuple in order to uniquely
identify connections. The decoupling of QUIC connections from IP
addresses and ports allows connections to be maintained even as
clients move between different networks. This capability is referred

Figure 1: An illustration of QUIC connection migration. Be-
fore the server can receive data from the client on the new
network path, it must be validated. The server can cache re-
cent path validations, preventing the need to perform them
every time a network migration occurs.

to as connection migration [8, §9]. When an endpoint detects a net-
work change, it performs a round-trip path validation to ensure
that the peer is still reachable before resuming the connection, as
demonstrated in Figure 1 [8, §8.2]. Connection migration can only
occur after a session has been fully established between a client and
server through a QUIC-TLS handshake. QUIC connection migration
enables massive performance improvements for mobile users, as
connections persist even when devices move across networks such
as between a mobile network and a local WiFi network. QUICstep
leverages this performance feature to circumvent censorship with
minimal latency overhead.

QUIC-TLS handshake. QUIC is designed as a secure-by-default
protocol that mandates encryption of data in transit. To achieve
this, QUIC is integrated with TLS encryption. Notably, QUIC-TLS
encrypts the Initial packets with a secret derived from a public
salt [57, §5.2]. Although QUIC Initial packet encryption does
not ensure confidentiality—since the keys can be derived by anyone
observing the connection—it still complicates SNI-based censor-
ship by DPI middleboxes as it requires additional computational
resources for decryption and more effort to track UDP flows.

2.1 Censorship of QUIC traffic
Network-level adversaries can analyze QUIC-TLS handshake pack-
ets and censor connections based on the TLS SNI field, making
HTTP/3 connections vulnerable to censorship. Specifically, a cen-
sor can first compute the secret used to encrypt the QUIC client’s
Initial packets with the client’s destination ID and the public
salt [57, §5.2]. It then decrypts the client’s Initial packet and
extracts the SNI field in its TLS ClientHello message. If the SNI
field matches the censor’s blocklist, the censor can then block the
ongoing QUIC connection.

The development and adoption of the QUIC protocol created a
temporary gap in QUIC censorship as censors needed time to de-
velop DPI software and devices capable of inspecting and blocking

2

https://github.com/inspire-group/QUICstep

QUICstep: Evaluating connection migration based QUIC censorship circumvention Proceedings on Privacy Enhancing Technologies YYYY(X)

(a) Adversary model (b) QUICstep design (c) QUICstep network requests

Figure 2: This figure demonstrates our adversary model and how QUICstep can be leveraged to circumvent censorship. (a)
demonstrates an adversary capable of monitoring, blocking or disrupting client traffic based on plaintext sensitive fields that
may be associated with HTTPS requests. (b) illustrates the architecture of QUICstep under this adversary model. Finally, (c)
demonstrates, at a high level, the full set of network requests performed by QUICstep.

QUIC traffic. For instance in 2023, following the Turkish govern-
ment’s decision to block a social media website due to criticism over
its handling of the Türkiye-Syria earthquake fallout, the website’s
developers reported that users could circumvent TLS-SNI-based
censorship by forcing a QUIC connection to their server [35].

However with the rise of QUIC traffic, censorship regimes con-
tinue to devisemethods to detect and blockQUIC traffic. Researchers
reported multiple instances of QUIC blocking around the world,
including China [76], Uganda [21], Iran [22], and Russia [21]. Early
attempts of QUIC censorship included blocking QUIC traffic in gen-
eral. For example, in 2022 Xue et al. reported that the Russian TSPU
censored QUIC traffic by identifying packets that have certain fin-
gerprints, then dropping all packets in that flow [74]. This strategy
aims to censor all QUIC traffic and cannot selectively censor traffic
to certain websites. As QUIC traffic is expected to increase, broad
QUIC blocking may yield increasing amounts of collateral damage.

As detailed in [76], since April 2024, the GFW started censoring
QUIC traffic by first decrypting the QUIC client’s Initial packets
then inspecting if the SNI field in the TLS ClientHello message
matches the blocklist.

2.2 QUIC connection migration for privacy
2.2.1 CoMPS. CoMPS is a connection-migration traffic splitting
framework proposed by Wang et al. aiming to improve robustness
against website fingerprinting [64]. CoMPS uses a path scheduler
that splits traffic across multiple network paths to limit the amount
of traffic an adversary can observe, under the assumption that the
adversary can only observe packets on a single path. The client uses
connection migration to route traffic across the different paths. This
work was also the first to present a high-level sketch of QUICstep,
suggesting that by sending handshake packets through a VPN path,
CoMPS can be used to circumvent SNI-based censorship. However,
censorship circumvention is only mentioned briefly as a potential
use case of CoMPS, and is not implemented or evaluated for deploy-
ment, feasibility, or performance. Thus, we explore the following
open questions: Would connection-migration based circumvention
be effective in practice? What would the performance benefits be
compared to tunneling all traffic using the handshake channel?

2.2.2 MIMIQ. MIMIQ uses connection migration in QUIC to fre-
quently change client IP address within a trusted network to thwart
user tracking and certain types of traffic analysis attacks [27].
MIMIQ requires cooperation from the client network, as it needs
the network to set up modified DHCP and an edge switch. Thus
it is not suitable for our censorship circumvention scenario where
the client network itself may be adversarial.

2.3 Related work
2.3.1 TLS session resumption. TLS session resumption has been
proposed as a way to circumvent SNI censorship. Introduced in
TLS 1.2, session resumption reduces the need for clients to conduct
handshakes for each TLS connection. When a TLS session is first
established, the server sends a unique ticket to the client which can
be used by the client to resume a TLS session with the server. Mul-
tiFlow and REDACT propose using session resumption to enable
decoy routing [18, 39]. More recently, BlindTLS proposes establish-
ing a connection to a censored domain through a VPN proxy and
resuming the session in plain sight of the censor with a different
SNI using TLS session resumption [50]. However, BlindTLS focuses
on session resumption in TLS 1.2, and would not work with TLS 1.3
as TLS 1.3 requires that the SNI sent in the resumption handshake
matches the SNI associated with the session [44]. In contrast with
BlindTLS, QUICstep is compatible with TLS 1.3 and is designed to
be independent of TLS version.

Our work is the first to thoroughly investigate leveraging various
properties of QUIC as a transport protocol to circumvent handshake
censorship, rather than being dependent on application-layer fea-
tures of TLS. Prior SNI censorship circumvention literature has
focused on the traditional TCP setting as most censorship in the
wild has been observed in this setting [15, 28].

2.3.2 Encrypted ClientHello. Encrypted ClientHello (ECH) is an
extension to TLS 1.3 that encrypts the ClientHello message, includ-
ing the server name, to protect user privacy [45]. ECH could be
used to circumvent censorship based on SNI blocklists since the
SNI is hidden from observers. However prior research has found
that ECH support in servers is limited and that censors in Russia,
China, and Iran currently censor ECH traffic, undermining ECH’s
practicality in censorship circumvention [42].

3

Proceedings on Privacy Enhancing Technologies YYYY(X) Seungju Lee, Mona Wang, Watson Jia, Qiang Wu, Henry Birge-Lee, Liang Wang, and Prateek Mittal

2.3.3 Measurement of QUIC connection migration support. Directly
relevant to our work is the availability and popularity of connection
migration. In 2024, Buchet and Pelsser investigated QUIC connec-
tion migration support on the web [13]. This work tests connection
migration by sending a packet with a new connection ID to the
server, but does not initiate or test if they are able to successfully
load resources after migrating connections. We found that such
a method was incomplete in measuring the practical success rate
of migrating connections after switching to a different port or IP
address. For instance, QUIC servers generally seem to support port-
based connection migration (e.g. migrating a QUIC connection onto
a new UDP port) differently from IP-based connection migration
(migrating a QUIC connection onto a new IP address). Our work
leverages QUICstep to provide the most complete Internet-wide
connection migration support measurement to date. We addition-
ally use data from these results to provide recommendations to
standards bodies for ways to improve the usefulness of connection
migration for all QUIC clients.

2.3.4 Other censorship circumvention systems. There is a long line
of research on censorship circumvention that assume more power-
ful adversaries compared to QUICstep’s threat model. These works
use complex traffic shaping, traffic mimicry, and other obfuscation
techniques for tunneling encrypted traffic, often against adversaries
that can use higher-cost techniques (e.g. powerful machine learn-
ing classifiers) to identify blocked content from the metadata of
encrypted traffic flows [24, 30, 33, 40, 46]. While we briefly discuss
more powerful adversaries in §5, we note that the focus of this work
is on realistic adversaries that have more limited resources. QUIC-
step’s focus on a “lightweight” censor is similar to Geneva, domain
fronting, domain shadowing, and Snowflake, many of which are
deployed in practice and are used by millions of users to circumvent
network censorship [9, 11, 23, 67].

2.3.5 Real-world censors prefer simple and efficient detection meth-
ods. As the GFW is often a first-mover in the global censorship
ecosystem, we soon expect other censorship regimes to follow suit
in enacting QUIC SNI censorship [76]. The goal of this work is to
stay ahead of the censors: what might widespread, global QUIC
SNI censorship look like in practice? Empirical measurements of
real-world censorship machines reveal that censors prefer relatively
simple and efficient detection mechanisms over comprehensive but
complex or expensive detection mechanisms [3]. For example, Wu
et al. discovered that the GFW only inspects the first TCP payload
sent by the clients when detecting if a TCP connection is fully
encrypted [70]. This is consistent with the idea that the handshake
packet, even when encrypted, is the most information-rich por-
tion of the connection that are used by censors to make efficient
blocking decisions. Similarly, Zohaib et al. discovered that the GFW
assumes the first UDP payload is a complete QUIC client Initial
packet when conducting QUIC SNI-based censorship [76]. Based
on these observations we focus on a censor that performs stateless,
lightweight censorship.

We acknowledge that in the future more invasive and powerful
censors that perform stateful censorshipmay emerge. But given that
GFW is the primary QUIC-SNI censorship system that is deployed
in the real world, we focus on GFW-style censors and consider

stateful censors beyond the scope of this work. We discuss our
threat model further in section §3.1.

3 Bringing QUICstep from theory to practice
QUICstep’s primary goal is to circumvent QUIC SNI censorship
while minimizing overall latency overhead and avoiding modifica-
tions to server-side software or the QUIC protocol. In this section,
we discuss how we bring QUICstep from theory to practice, by first
demonstrating our threat model and implementation goals, and
then delving into the challenges and implementation details.

3.1 Threat model
Our threat model follows prior work on research on censorship cir-
cumvention techniques such as domain fronting [23] andGeneva [9].
In our threat model, the client is located in a censored network
and aims to access a censored domain hosted on a non-blocked IP
address outside the censored network. The censor uses DPI tech-
niques such as DNS and SNI filtering to identify and prevent such
access. We consider a practical censor as discussed in §2.3.5, who
employs lightweight methods to achieve real-time detection at scale.
Specifically, the censor leverages stateless detection techniques that
can be performed on a per-packet basis, and does not record all
network flows to perform flow-level traffic analysis. Anonymity
is not a primary concern for the client, which aligns with the as-
sumptions in previous works (e.g., MassBrowser [41]). In practice,
public VPNs or proxies are commonly used by users in censored
countries to bypass censorship even though these tools do not guar-
antee anonymity. User surveys also suggest that users in censored
regimes often prioritize content access and internet speed over
security or anonymity [14, 72].

3.1.1 Client model and the handshake channel. The client wants to
access censored domains with low performance overhead. We as-
sume that the client can already access a secure, blocking resistant
but potentially high-latency handshake channel (e.g. a DNS tunnel
or public VPN) for every connection. A large amount of censorship
resilience literature is focused on the development of such high-
security, low-bandwidth channels, such as Tor bridges/pluggable
transports, the rendezvous channel used in Tor’s Snowflake [11],
signaling channels for Tor bridge distribution [60]. The client can
employ any of these synchronous, high-security channels as a hand-
shake channel. Censorship circumvention tools like Hysteria [31],
V2Ray [59], Xray [71], Sing-box [52], and Tor pluggable transports
such as Meek (domain fronting) [43] are also potential options for
handshake channels.

However it is not desirable for the client to rely on this chan-
nel for all traffic. The handshake channel is resource-constrained
(shared with other users), and thus may charge or impose band-
width or data constraints on individual users. For example, the free
version of Lantern has a monthly data limit of 500MB [36].

We also assume that the censor is unable to break the security
guarantees of QUIC or the handshake channel and will not attack
the availability of certain classes of web traffic (e.g. blocking all
QUIC traffic) to avoid collateral damage. Further discussion on
blocking all or certain types of QUIC traffic continues on §5. Figure
2(a) illustrates a censored network representing our threat model.

4

QUICstep: Evaluating connection migration based QUIC censorship circumvention Proceedings on Privacy Enhancing Technologies YYYY(X)

3.2 Implementation
Figure 2(b) depicts the high-level architecture of QUICstep. The
client first completes a QUIC-TLS handshake and establishes a
QUIC session with the server through a secure handshake channel.
The client then immediately switches to the native network path,
allowing the rest of the packets to be sent directly to the server
with minimal latency.

QUICstep requires setting up a handshake channel. The hand-
shake channel can be any secure channel with blocking resis-
tance (e.g., VPN). For our prototype, we used a WireGuard channel.
We did not use Tor even though it provides much higher secu-
rity and anonymity guarantees, as Tor currently does not sup-
port UDP tunneling. Furthermore, using WireGuard proxies un-
der our control enables a more controlled experiment where we
can vary proxy location or throughput. Many users in censored
domains actively use such custom proxies for censorship circum-
vention [31, 48, 51, 52, 59, 71]. We note that our implementation of
QUICstep is agnostic to the particular type of handshake channel
so long as the channel provides a virtual network interface.

3.2.1 Implementation goal. Our primary goal in implementing
QUICstep is to develop an easy-to-implement, application-agnostic
solution. We want QUICstep to be compatible with the vast tech-
nological environments that clients and servers may be running in,
e.g., requiring no modifications to client applications, upper-layer
protocols, operating systems, and browsers. Our implementation
of QUICstep does not necessitate any changes apart from requiring
that the client and server support QUIC and connection migration.

3.2.2 Implementation choices and challenges. Once handshake hap-
pens through the handshake channel, the challenge is to identify
confirmation of the handshake and route packets accordingly (re-
gardless of the application through which the packets are trans-
mitted). According to the QUIC standard, connection migration
is expected to happen after the handshake is confirmed at the
peer [32]. When the server confirms the handshake, it sends a
HANDSHAKE_DONE frame to the client in a 1-RTT packet, but this
frame is encrypted and hard to identify from outside of the appli-
cation. If handshake confirmation is not accurately identified it
can incur latency overhead as the server sends additional packets
through the handshake channel to complete the handshake.

To accurately identify handshake confirmation we considered
two options: (1) using eBPF [20] to heuristically determine which
connections had finished handshake confirmation based on unen-
crypted parts of payloads and (2) modifying QUIC clients to track
the frame. However, the first solution requires managing the state
of multiple connections and requires privileged deployment in the
client, and the second would be challenging to deploy in practice
as it requires changes to the QUIC client. Neither of these satisfied
our requirements for flexibility and ease of future deployment.

As such, we chose instead to approximate handshake confirma-
tion time by simply routing handshake packets differently from
data packets. The key insight is that QUIC handshake packets use
the QUIC “long header” format, but data packets use the QUIC
“short header” format. The two formats are differentiated by the
unencrypted first bit of the QUIC header. Thus it is possible to

differentiate handshake packets from data packets using only in-
formation exposed on the wire.

3.2.3 Proof-of-concept implementation description. Our proof-of-
concept version of QUICstep uses iptables firewall rules to route
select packets through the WireGuard interface. Our rules route
DNS packets (UDP packets headed to port 53), TCP packets, and
QUIC long header packets (UDP packets headed to port 443 whose
payloads begin with 1) through the WireGuard interface. This en-
sures that all packets containing server name are transmitted se-
curely. In addition, QUICstep does not have any requirements for
the client besides having access to a WireGuard proxy (or other
handshake channel), and incurs no significant latency overhead
on the client. If the server does not support QUIC or connection
migration, the client would fall back to TCP which is fully trans-
mitted through the handshake channel. The user experiences no
significant failure.

The code for our implementation and evaluations are made avail-
able at https://github.com/inspire-group/QUICstep.

4 Evaluation
In this section, we evaluate QUICstep’s ability to circumvent real-
world censorship as well as its performance.

4.1 Research questions and overview
We give an overview of the evaluations designed to answer each of
our research questions (as outlined in §1).

4.1.1 QUICstep-compatibility: measuring compatible websites in
the wild. We identify the current state of QUIC and connection
migration support among popular websites by performing HTTP/3
GET requests with QUICstep (§4.2). We find that 22% (∼220 K) of top
1M domains support QUIC and 12.8% (∼28 K) of QUIC supporting
domains are compatible with QUICstep. Our findings additionally
suggest that the role of service providers is critical in support for
connection migration.

4.1.2 Effectiveness: practical censorship circumvention with QUIC-
step. We evaluate QUICstep’s ability to circumvent real-world cen-
sors that perform SNI-based censorship on TLS and QUIC traf-
fic (§4.3). Since QUICstep transmits handshake packets through a
handshake channel, it becomes much more difficult for censors to
judge whether to block a particular connection or not. We find that
QUICstep indeed successfully circumvents SNI-based censorship in
the wild, including the recently implemented QUIC SNI censorship
by the GFW.

4.1.3 Performance evaluation. We provide a quantitative analysis
of the latency of QUICstep to scenarios where all traffic is sent
through the native channel or the handshake channel under differ-
ent settings (§4.4). QUIC connection migration ensures that path
switching between the direct and tunneled paths only introduces
one RTT of latency (i.e., path validation), and does not disrupt the
ongoing session between the client and the server. Compared to
a native QUIC connection, QUICstep does incur some additional
latency due to conducting the handshake over the handshake chan-
nel and path validation during path switching. However, we find
that this latency overhead is amortized over the entire request and

5

https://github.com/inspire-group/QUICstep

Proceedings on Privacy Enhancing Technologies YYYY(X) Seungju Lee, Mona Wang, Watson Jia, Qiang Wu, Henry Birge-Lee, Liang Wang, and Prateek Mittal

QUICstep provides up to 84% reduction in page load time compared
to using the handshake channel for all traffic.

We also show that QUICstep reduces load on the handshake chan-
nel provider by a median of 93% over 100 different websites (§4.4.3).
High-latency channels incur hosting costs, such as for rendezvous
hosts, Tor bridge volunteers, or for resilient VPN providers. Band-
width is either explicitly limited due to the mode of transport, oth-
erwise capped by providers, or simply lowered in practice due to
the channel being often overloaded. By opportunistically migrating
connections to the devices’ native network, QUICstep minimizes
bandwidth usage and reduces load for the high-latency channel.

4.2 QUICstep support: measuring compatible
websites in the wild

To identify the scale of QUICstep’s impact, we aim to measure the
number of websites (domains) that support QUIC, are fully compat-
ible with QUICstep, or only partially support connection migration.
Fully compatible websites are ready to use with QUICstep, while
QUIC-supporting websites that do not or partially support connec-
tion migration will benefit from QUICstep in the future as QUIC
libraries continue to mature.

4.2.1 Experiment setup and methodology. We begin with identify-
ing QUIC-supporting websites in the wild. To identify server-side
support for QUIC, we sent HTTP/3 GET requests over QUIC to
Tranco top 1M domains [37], denoting support for QUIC if the
client successfully connects to the server. We used the Chromium
quic_client to perform these tests [26]. We then aim to find
QUICstep-compatible websites among QUIC-support websites. To
measure QUICstep compatibility we conducted HTTP/3 GET re-
quests with QUICstep enabled and denoted success when the fetch
succeeded without error. We examined packet captures during the
connection for a sample of successful QUICstep fetches and verified
that the connection was functioning after migration. We repeated
requests for both the parent and www subdomain. We denoted suc-
cess if either of the two succeeded. We excluded 404 Error pages
served over QUIC, but included redirect pages. The client and hand-
shake channel provider for QUICstepwere located in North Virginia
and Ohio, respectively.

4.2.2 A notable portion of QUIC websites are QUICstep-compatible.
As of October 25, 2024, we found 219,729 websites (22%) among top
1M that support QUIC. Out of these QUIC-supporting websites,
28,104 (12.8%) were compatible with QUICstep.While QUIC support
is yet far from universal, we expect that in the future QUIC will
be both more widespread (more entities supporting QUIC) and
complete (QUIC implementations fully adhering to standards).

We further analyzed the associated network providers of these
compatible domains. Table 1 shows top 10 QUIC providers within
the top 1M domains and QUICstep-compatibility in each provider.
As observed, 74.6% of QUIC-supporting domains are using Cloud-
flare; however, only a small fraction (0.2%) of Cloudflare’s QUIC-
supporting domains were compatible with QUICstep. Upon further
investigation, we found that this low compatibility rate stems from
a specific limitation within the Cloudflare CDN: it does not yet fully
support connection migration. Since connection migration support
is expected as per the QUIC RFC [32], this demonstrates that even

Provider # QUIC domain # of QUICstep-compatible
domains

Cloudflare 163900 (16.4%) 335 (0.2%)
Google 7191 (0.72%) 748 (10.4%)
Amazon 7067 (0.71%) 3858 (54.6%)
Hostinger 4738 (0.48%) 2770 (58.5%)
Fastly 4140 (0.41%) 2114 (51.1%)
Hetzner 2187 (0.22%) 1802 (82.4%)

Automattic 1675 (0.17%) 9 (0.5%)
Wix 1084 (0.11%) 0 (0.0%)
OVH 1068 (0.11%) 710 (66.5%)

Bigcommerce 896 (0.09%) 1 (0.1%)
Table 1: Top 10 QUIC providers and the proportion of QUIC-
step compatibility in each.

broadly-used implementations of QUIC are still lagging behind the
expectations of the full specification. We also tested Cloudflare’s
open-source QUIC implementation, quiche, and confirmed that it
currently lacks proper support for connection migration.

Hetzner has a particularly high support of connection migration
among their QUIC-supporting domains. Most of the connection
migration supporting domains in Hetzner (likely using Hetzner’s
hosting service) use the Litespeed server, which provides connec-
tionmigration capability. This showsmajor cloud/hosting providers
play a key role in the rollout of connection migration; a simple ser-
vice update may significantly increase the number of websites able
to benefit from connection migration.

We argue that some domain owners may be unaware they are
missing out on QUIC’s performance benefits due to the incompati-
bility of their websites’ dependencies (CDN, load balancer, etc.) with
standard QUIC. Some dependencies do not fully support all critical
QUIC features defined in the RFC standards such as connection
migration despite announcing QUIC support.

Another case is AWS CloudFront. CloudFront claims to support
connection migration, but in practice support was often inconsis-
tent. We will discuss more of this in §4.2.3.

4.2.3 The number of websites with partial support for connection
migration is growing. In our measurements, we found websites that
do not support IP address migration but support port migration.
This is likely because QUIC libraries that web servers or their de-
pendencies use fail to properly implement the connection migration
feature. We anticipate these partial supporters could become com-
patible with QUICstep in the future as QUIC libraries continue to
mature.

We conducted a long-term measurement to track these potential
QUICstep-compatible websites. To measure port migration support,
we leverage the ephemeral port migration option provided in the
quic_client. This option performs an HTTP/3 GET request and
then migrates to an ephemeral port to perform a second HTTP/3
GET request on the same connection. We note that some of those
port migration supporters may already support IP address migra-
tion, which makes them fully QUICstep-compatible; nevertheless,
we count them as potential. We performed daily scans on top 1M
domains from August 3, 2024 to November 13, 2024. Figure 3 shows

6

QUICstep: Evaluating connection migration based QUIC censorship circumvention Proceedings on Privacy Enhancing Technologies YYYY(X)

20
24

-08
-01

20
24

-08
-15

20
24

-09
-01

20
24

-09
-15

20
24

-10
-01

20
24

-10
-15

20
24

-11
-01

20
24

-11
-15

Date

200K

210K

220K

230K

240K

Q
U

IC
 su

pp
or

t

20
24

-08
-01

20
24

-08
-15

20
24

-09
-01

20
24

-09
-15

20
24

-10
-01

20
24

-10
-15

20
24

-11
-01

20
24

-11
-15

Date

26K

28K

30K

32K

Po
rt

m
ig

ra
tio

n
su

pp
or

t

Figure 3: Number of websites that support (a) QUIC and (b)
port migration from daily Tranco top 1M websites from Au-
gust 3, 2024 to November 13, 2024. Support for port migration
increased sharply around late September, 2024.

that while the number of QUIC-supporting websites has been fluc-
tuating, the number of potential QUICstep-compatible websites has
increased significantly. When we began measurements on August
3, 2024, 26,234 domains supported port migration. On September
26, 28,060 websites supported port migration; by September 29 it
increased to 31,262 and the number has stayed above 31,000 since.

The increase in potential QUICstep-compatible websites could
be attributed to QUIC library upgrades. For example, Varnish CDN
did not support connection migration when we began the measure-
ment, but our recent check confirms that it now fully supports port
migration and some of its servers support IP address migration.

There are some special cases that support only IP address mi-
gration and not port migration. We exclude this case from mea-
surement because nearly all of these domains are associated with
the CloudFront CDN. Additionally, we found that different servers
(distinguished by IP addresses) that host amazon domains have
varying responses to IP address migration. Even for the same do-
main, some servers support IP address migration but some do not.
We suspect there were deployment issues that caused the servers to
use different versions of QUIC implementations or configurations
(e.g., we have received “connection migration disabled by server”
error messages from some servers but not others). We expect that
robust and consistent migration support will extend to all servers
in the near future.

4.2.4 The road to connection migration. Our measurements indi-
cate that while connection migration adoption is on the rise, two
major practical challenges could impede further deployment and
usage: (1) QUIC implementations are not compliant with the RFC
standard, and do not or only partially support connection migration.
(2) The complex dependencies of modern websites demand robust
support for connection migration at critical infrastructure points.
Tackling these challenges requires cooperation between different
stakeholders such as QUIC developers, application providers, and
service providers. Particularly, due to the centralization of the In-
ternet, service providers play a critical role in the process; their
willingness to adopt updated implementations and configure the
infrastructure to support connection migration will directly impact
the feature’s success. For example, if Cloudflare properly supports
connection migration, 87.2% of QUIC-supporting domains would
be able to leverage connection migration.

We believe that a crucial step in advancing connection migration
rollout is to develop a reliable tool for testing connection migration
in both QUIC library development and QUIC-supporting service de-
ployment. We see QUICstep as a stepping stone. As discussed above,
connection migration involves complex cases that have often been
overlooked and can only be discovered during actual migration
events e.g., supporting port but not IP address migration. QUICstep
can be viewed as a system that introduces artificial mobility events
into the network to activate the migration features of native QUIC.
With QUICstep, there is no need to infer a server’s support for con-
nection migration using indirect information, as done in previous
work [13]. Instead, QUICstep obtains a definitive confirmation of
migration support based on whether the migration has actually
succeeded.

4.3 Effectiveness: practical censorship
circumvention with QUICstep

We test the capability of QUICstep to circumvent real-world SNI-
based censors, confirming that QUICstep is capable of accessing
blocked websites.

4.3.1 Real-world TCP+TLS SNI censorship. Our first evaluation
was against our local [anonymized institution] Palo Alto Networks
firewall that performs TLS SNI-based censorship. We accessed a
domain under our control that was blocked by the firewall via SNI
censorship. We did not control the firewall, and the domain was
added to the firewall by Palo Alto’s automatic system due to the
domain name being relevant to cryptocurrency.

Our tests verified that the domain was blocked via SNI-based
censorship. DNS requests to this domain returned the correct IP
address, TCP SYN -> SYN+ACK handshake with the IP address
completed successfully, and directly connecting to the IP address
without domain name also succeeded. However, we observed a
middlebox inserting an RST packet into the connection immediately
after the client sent a TLS ClientHello with this domain name in
the SNI field.

We successfully established a QUIC session with this domain via
QUICstep. We note that connecting to the web server with a native
QUIC connection also succeeded, implying that SNI censorship
performed by this firewall did not perform SNI-based blocking in
QUIC traffic. Nevertheless, this does not diminish QUICstep’s suc-
cess as our findings confirm that QUICstep’s applicability includes
conventional TCP SNI censorship.

4.3.2 Real-world QUIC SNI censorship. We take particular interest
in the case of GFW, one of the leading censorship systems, has
recently begun selective censorship of QUIC traffic using QUIC SNI
since April 2024 [76]. We tested QUICstep against real-world QUIC
SNI censorship in China and found that QUICstep can effectively
bypass QUIC SNI censorship. Websites that could not be reached
with the native connection were reliably accessible with QUICstep.

We used an Alibaba VM in mainland China as the client and
ran the quic_client to fetch websites (with SNI specified). We
consulted the authors of [76] to understand the nature and extent
of QUIC SNI censorship in China and obtained a list of QUIC SNI
censored domains. During the time span of our experiments, we

7

Proceedings on Privacy Enhancing Technologies YYYY(X) Seungju Lee, Mona Wang, Watson Jia, Qiang Wu, Henry Birge-Lee, Liang Wang, and Prateek Mittal

varied the locations of handshake channel provider across different
AWS regions to avoid leaving consistent traces.

Our first experiment used a QUIC server under our control,
running on an AWS EC2 instance located in North Virginia. We
first set up this server with both a non-censored hostname and a
censored hostname (youtube.com). Both the native client and the
QUICstep client were able to access the server with the QUIC SNI
set as the non-censored hostname, over multiple repeated trials.
With youtube.com as the QUIC SNI hostname, the native QUIC
client was blocked after several repeated fetches. The blocking does
not happen immediately because the censor inspects traffic in a
probabilistic manner and blocks the connection to the destination
after it detects unwanted traffic. However, the QUICstep client
successfully accessed the server throughout 50 consecutive fetches.

We also identified real-world domains that can be unblocked
with QUICstep as discussed in §4.3.3 and tested them. We used a
small sample of real-world websites for testing the feasibility of
QUICstep. We tested 7 subdomains of tiktokcdn.com that were
QUIC SNI blocked, but accessible with QUICstep. We repeatedly
found that while the native connection failed after several fetches,
QUICstep consistently succeeded in accessing the domains.

4.3.3 One-third of websites currently censored by QUIC SNI in China
could potentially benefit from using QUICstep. We measured QUIC
migration support of the websites censored by QUIC SNI in China.
We find that connection migration support is high across websites
that are censored under particular regimes. A concurrent work [76]
tested the full Tranco list (∼7M websites) obtained on October 2,
20241 and found 28,458 domain nameswere on the GFW’s QUIC SNI
blocklist: If a QUIC Initial packet contains any of these domains
as the SNI, the connection will be dropped. However, this serves
more as a preventive measure since many of these domains do not
support QUIC. We found that among these websites 2,404 (8.45%)
support QUIC and among them 828 (34.4%) are compatible with
QUICstep. QUICstep can unblock these websites if the client can
identify some unblocked IP address associated with the domains.

We additionally tested QUICstep compatibility with websites
that were censored by TCP SNI, as these websites could be gradually
added to the GFW’s QUIC SNI blocklist in the future. Using the
methodology from [15] with a test list of 65,153,600 domains2,
we identified 5,700,928 websites censored by TCP SNI in China.
Among these websites 3,524,808 (61.8%) support QUIC and among
them 3,516,979 (99.8%) were compatible with QUICstep. This is
due to a large proportion (99.2% of QUIC supporting domains) of
blogspot.com and wixsite.com subdomains within the blocklist,
both of which support QUICstep.

4.4 Performance evaluation
In this section we aim to understand the factors that affect per-
formance of QUICstep with comparison to completely relying on
the proxy under different settings. We investigate the effect of dif-
ferent configurations including proxy bandwidth, client location,
and proxy location on page load time and time to first byte. We
demonstrate that QUICstep significantly reduces the load on a VPN

1Domain list available at https://tranco-list.eu/list/664NX
2A combination of any domain that ever appeared in one of Alexa Top 1M, Tranco
1M, Cisco Umbrella 1M for at least one day between Jun 23, 2021 and Jun 23, 2022

2500 5000 7500 10000
VPN page load time (ms)

0

5000

10000

Q
U

IC
st

ep
 p

ag
e

 lo
ad

 ti
m

e
(m

s)

Figure 4: Page load time of QUICstep and VPN connections
for 100 different domains. Client in London, handshake chan-
nel provider in Ohio with a maximum throughput of 5Mbps.
QUICstep generally provides shorter page load time com-
pared to VPN.

proxy compared to full VPN connections, and provides greater per-
formance gain in bandwidth-limited environments. By optimizing
proxy location and DNS resolution, the performance of QUICstep
can be further boosted.

4.4.1 Methodology. In our default setting, our client is in London
(AWS region), and the handshake channel provider is in Ohio, rate-
limited to a maximum throughput of 5Mbps. We used Chrome
controlled by Selenium to visit a website that supports connec-
tion migration through the native connection, full VPN connection
(i.e., tunneling all traffic via the handshake channel provider), and
QUICstep 100 times. In each round, we alternated between the
3 connection types to mitigate the effects of network fluctuation.
We recorded two performance metrics through Selenium: Time
to First Byte (responseStart-navigationStart) and Page Load
Time (domComplete-responseStart). Time to first byte (TTFB)
includes the latency from the handshake, which occurs through
the encrypted VPN channel. Therefore, we expect TTFB for QUIC-
step to be similar to that of the VPN. However, after the hand-
shake, QUICstep fetches the website content through the native
connection, so we anticipate a reduced page load time for QUICstep
compared to the VPN.

In our evaluation, we varied client location, handshake channel
provider location, and handshake channel bandwidth to under-
stand their influence on QUICstep performance. We conducted our
measurement with three client locations (London, New Jersey, and
Osaka) and seven proxy locations (Frankfurt, Ireland, Montreal,
Ohio, Oregon, Seoul, and Tokyo), resulting in a total of 21 location
combinations. Besides, we set different rate limits on the handshake
channel provider to emulate the bandwidth-limited secure channels
real-world users would have. We tested a maximum throughput of
1Mbps, 5Mbps, 10Mbps, and with no rate limit. These numbers
were chosen to match the scale of the throughput of popular proxy
services: Tor has a median throughput of around 10Mbps [56],
Psiphon’s free version limits throughput to 2Mbps [66, 68].

Unless explicitly mentioned, our observations are generally con-
sistent across various settings, and for clarity and simplicity, we
only report on the result from the default setting (client: London,
handshake channel provider: Ohio, rate: 5Mbps). The performance
number is the median of 100 rounds of measurements.

4.4.2 QUICstep generally offers improved performance compared
to full VPN. Our measurement quantifies the performance gain

8

QUICstep: Evaluating connection migration based QUIC censorship circumvention Proceedings on Privacy Enhancing Technologies YYYY(X)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Native QUICstep VPN

(a) Ohio

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

(b) Ireland

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

(c) Seoul

Figure 5: CDF of time to first byte (in milliseconds) from 100 fetches of www.youtube.com with the client located in London
and proxies located in Ohio, Ireland, Seoul with proxies’ maximum throughput limited to 5Mbps. QUICstep performance is
comparable to the VPN connection.

QUICstep provides over full VPN connections. Figure 4 shows the
distribution of VPN and QUICstep median page load time (across 20
rounds) for 100 different domains that are QUICstep-compatible in
the Tranco top 1 K list fromOctober 25, 20243. Themajority of tested
domains experience shorter page load time when using QUICstep
compared to VPN, with the time reduction being as great as 84%.
As noted in §3.2.2, our implementation approximates handshake
completion, so with a more accurate migration we may be able to
achieve even greater reduction.

Our measurement also confirms our hypothesis about the TTFB
and page load time discussed in §4.4.1. We show the TTFB and
page load time of www.youtube.com under different client/proxy
location combinations in Figure 5 and Figure 6, respectively. Here
we chose www.youtube.com as our target website because it is the
largest website that reliably supports connection migration. We can
clearly observe that though the TTFB of QUICstep is comparable
to that of full VPN, QUICstep provides a significant gain in page
load time compared to full VPN.

4.4.3 QUICstep significantly reduces load on proxy (handshake
channel provider). 4 The intuition behind the performance improve-
ment is simple: QUICstep can significantly reduce the traffic that
needs to go through the proxy (i.e., only handshake packets in
QUICstep vs. full connection in conventional VPN). To quantita-
tively understand the load reduction benefit offered by QUICstep,
we captured the packets at the proxy during each website visit when
using QUICstep and VPN, and computed the traffic ratio. ‘Traffic
ratio’ refers to the ratio of the size of traffic through proxy in a
QUICstep connection to the size of traffic through proxy in a full
VPN connection, and ‘load reduction’ refers to 1 − (traffic ratio).
As shown in Figure 7, QUICstep reduced the load on the VPN
proxy by a median of 93% compared to VPN. In the case of
www.youtube.com, there was 3.634MB traffic through the proxy
with the full VPN connection but only 96KB with the QUICstep
configuration, reducing load by 97.4%. This load reduction helps
users alleviate costs for pay-as-you-go proxy servers or enables
them to maximally utilize proxy services with data limits.

4.4.4 QUICstep can achieve performance comparable to native QUIC
via optimizing proxy location. As expected, proxy (handshake chan-
nel provider) location affects the performance of QUICstep. When

3Domain list available at https://tranco-list.eu/list/N34YW
4For brevity, ‘proxy’ refers to handshake channel provider.

the proxy moves farther away (geographically) from the client,
QUICstep adds more additional page load time to the native con-
nection (Figure 6). One obvious reason for this performance degra-
dation is that the round trip time between the client and proxy
increases as the proxy moves farther away. However, another no-
table aspect is that changing the proxy location also changes the
server’s location since many websites are served through CDNs. In
QUICstep (as well as VPN), the DNS request is performed through
the proxy, so the client connects to a web server near the proxy; in
the native connection, the client connects to a server near itself.

We believe server location could have a greater impact on per-
formance than proxy round-trip time, given that the majority of
traffic in QUICstep is sent directly to the server through the native
connection. In fact, we do observe that in certain cases, the per-
formance of QUICstep could be comparable to native QUIC (e.g.,
Figure 6 (b) (f) (g)). We hypothesize that in these cases our requests
happened to be served by servers in the same geographical region.
This also suggests that the client could strategically choose a
proxy location that is as geographically close as possible to
the client’s own location that is outside the censor’s regime
to achieve optimal performance, especially when connecting to
websites like www.youtube.com that are served on CDNs consist-
ing of geographically diverse servers.

4.4.5 QUICstep provides greater performance gain in the bandwidth-
limited environment. Recall that real-world proxies may only pro-
vide limited bandwidth. handshake channel providers may also
further downgrade services when demand is high due to resource
constraints [72]. To understand QUICstep’s performance benefit
in the bandwidth-limited environment, we examined the ratio of
QUICstep page load time to VPN page load time while fetching
www.youtube.com with varying proxy maximum throughput and
client/proxy locations. A small ratio indicates a larger performance
gain over VPN. Table 2 (full table in Appendix Table 4) shows
the results, and we observe that QUICstep’s performance gain
becomes more evident as proxy bandwidth decreases. Particu-
larly, when the proxy throughput is 1Mbps or 5Mbps, QUICstep
always performs better than the VPN. When the bandwidth is
10Mbps, there are some cases where the VPN outperforms QUIC-
step. This is likely due to AWS-based proxies being well-connected,
making the proxy route potentially more efficient than the direct
route between the client and server. Even when there is no rate
limit, we were able to identify at least one proxy location where

9

Proceedings on Privacy Enhancing Technologies YYYY(X) Seungju Lee, Mona Wang, Watson Jia, Qiang Wu, Henry Birge-Lee, Liang Wang, and Prateek Mittal

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

(a)

Native QUICstep VPN

L
o
n
d
o
n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

(b)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000

(d)

O
s
a
k
a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000

(e)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

(f)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000

(g)N
e
w

 J
e
rs
e
y

Ohio

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000

(h)

Ireland

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000

(i)

Seoul

Figure 6: CDF of page load time (in milliseconds) from 100 fetches of www.youtube.com, with clients in London, Osaka, New
Jersey (Y-axis) and handshake channel provider in Ohio, Ireland, Seoul (X-axis). The handshake channel provider’s maximum
throughput is limited to 5Mbps. QUICstep outperforms the VPN connection in all locations and closely follows the performance
of the native connection when the client and proxy are geographically proximate such as (b), (f), (g).

0.0 0.2 0.4 0.6 0.8 1.0
Traffic ratio

0.2

0.4

0.6

0.8

1.0

C
D

F

Median: 0.07
93% load reduction

Figure 7: CDF of traffic ratio (defined in §4.4.3). QUICstep
provides a 93% median load reduction.

QUICstep provides comparable or better page load time than the
VPN connection and incurs less than 5% latency overhead compared
to the native connection. We observed a similar pattern for TTFB
as in §4.4.2 and omit the results here to save space.

Overall, QUICstep can provide greater performance gain when
the proxy has limited throughput. This is particularly appealing
for real-world users, given that public VPN services or volunteer
proxies are often throttled. By reducing the amount of traffic that
must pass through the rate-limited channel, QUICstep effectively
mitigates potential performance bottlenecks.

4.4.6 QUICstep provides greater performance gain for large websites.
Another common factor that could affect browsing performance
is website size. However, evaluating the impact of website size on
QUICstep in a real-world setting is challenging, as various “noise”
factors (e.g., dependencies on third-party servers) can affect perfor-
mance estimation. Therefore, we performed a controlled experiment
to eliminate noise. We set up our own QUIC server (using Google’s
QUICHE) and hosted files of varying sizes, and used the Chromium

 0

 0.2

 0.4

 0.6

 0.8

 1

10KB 100KB 1MB 10MB

5 Mbps
10 Mbps

None

Figure 8: The ratio of file download time of QUICstep over
VPN under different rate limits and file sizes. A smaller ratio
indicates better performance. The full result is in Table 5.

quic_client to fetch the files under various proxy throughput
limits. We show the ratio of file download time of QUICstep over
VPN in Figure 8, and more detailed numbers are in Appendix Ta-
ble 5. As expected, we see QUICstep provides greater performance
gain over VPN when the file is larger. This pattern becomes more
evident when observing QUICstep’s overhead over the native la-
tency (Appendix Table 5). QUICstep connection does not induce
additional latency after handshake, so the latency overhead stays
consistent regardless of file size.

We expect that for large websites, QUICstep provides greater
performance gain over VPN because there is a greater proportion
of traffic through the native channel.

4.4.7 Optimizing DNS resolution can further improve QUICstep
performance. As we discussed in §4.4.4, the location where DNS
queries are performed has a non-negligible impact on QUICstep

10

QUICstep: Evaluating connection migration based QUIC censorship circumvention Proceedings on Privacy Enhancing Technologies YYYY(X)

Client Proxy Max throughput 1 Mbps Max throughput 5 Mbps Max throughput 10 Mbps No rate limit
Ireland 0.069 0.338 0.510 0.996

Frankfurt 0.070 0.340 0.616 0.898
Montreal 0.072 0.463 0.738 1.052

London Ohio 0.088 0.458 0.588 0.996
Oregon 0.088 0.554 0.860 1.071
Seoul 0.128 0.586 0.633 0.765
Tokyo 0.124 0.682 0.976 1.553

Table 2: Ratio of QUICstep page load time to VPN page load time with different proxy locations and proxy rate limits. Proxies
are listed in order of geographical distance from the client. The full result is in Table 4.

performance, because it may consequently influence the location
of the server the client will connect to. Ideally, we would like the
client to perform DNS queries by itself to ensure the selection of
the most optimized server. However, this is not feasible in practice,
as DNS censorship is the most basic and prevalent form of censor-
ship. Censors often read plaintext DNS queries and interfere by
blocking the query or injecting responses containing their own IP
addresses [29, 34].

There are several approaches for the client and proxy to select
an optimized server IP address:

(1) The client could perform an encrypted DNS request using
methods like DNS over TLS (DoT) or DNS over HTTPS (DoH). The
greatest challenge in using encrypted DNS is whether the client
can access encrypted DNS resolvers, particularly since some coun-
tries are known to censor those resolvers [34]. There are several
other considerations and limitations to using encrypted DNS for
censorship circumvention. If the resolver is within the censor’s
regime, censors can manipulate the unencrypted traffic between
the resolver and the nameserver [34]. Also, DoH downgrade to
plaintext DNS is not uncommon in practice [38]. (2) The proxy can
leverage EDNS Client Subnet (ECS) to reveal the client’s network
prefix to the authoritative DNS server. We note that anonymity
is not a main concern for the client, as discussed in §3.1. If the
target domain’s authoritative DNS servers support ECS, the client
will receive IP addresses that are closer in proximity to the client’s
network specified in the DNS query. We note that ECS support is
not ubiquitously available across recursive resolvers (e.g., Cloud-
flare [17]) and authoritative servers. The proxy can use a modified
DNS client or run a local recursive resolver for DNS resolution, as
standard DNS clients do not natively support ECS. (3) The client
may directly connect to the optimized server (or frontend) IP ad-
dress obtained via an out-of-band channel (e.g., a system similar to
Lox [58] and rBridge [65]).

We evaluated QUICstep’s performance under the case where
the client has some means of safely obtaining an optimized server
IP address that is geographically close to itself. All native, VPN,
and QUICstep connections used an IP address btained by the client,
which eliminates the additional latency caused by the client connect-
ing to a server far away from itself. Figure 9 shows that QUICstep
marginally reduces even the TTFB compared to VPN, unlike Fig-
ure 5 where QUICstep and VPN had comparable TTFB latencies.
Table 3 shows QUICstep’s page load time compared to VPN and
native connections with different proxy locations. QUICstep to VPN
page load time ratio is significantly reduced for proxies far from the

0 250 500 750 1000 1250
VPN time to first byte (ms)

0

250

500

750

1000

1250

Q
U

IC
st

ep
 ti

m
e

to

 fi
rs

t b
yt

e
(m

s)

Rate limit 5 Mbps
Rate limit 10 Mbps
No rate limit
y = x

Figure 9: Time to first byte for VPN and QUICstep connec-
tions when DNS is performed at the client. QUICstep shows
better time to first byte than the VPN connection unlike the
default setting where the two values are comparable.

client. For example, with a proxy in Tokyo, using QUICstep reduced
latency by 32% over VPN when the client in London accessed a
server near Tokyo. But latency reduction was as great as 70%, a
gain 2.65 times more significant, when the client accessed a server
near itself.

Again, it is important to note that while the DNS resolution pro-
cess itself has manageable overhead, the primary factor is the server
location determined by the DNS query location. By optimizing DNS
resolution, QUICstep performance can be boosted significantly.

Summary of performance evaluations. QUICstep enables clients
to make more efficient and effective use of secure handshake chan-
nels with limited performance by significantly reducing the amount
of traffic that goes through the handshake channel. QUICstep’s
performance benefits are more pronounced when the handshake
channel incurs greater increase in page load time compared to
the native channel: when the handshake channel has low band-
width and when the website is large. QUICstep’s performance is
strongly correlated with the location of the proxy and the server.
Using a proxy close to the client and connecting to a server close to
the client by leveraging ECS or out-of-band channels can enhance
QUICstep performance.

5 Potential attacks against QUICstep
In this section, we explore potential attacks against QUICstep and
their feasibility, starting from simple protocol blocking and pro-
gressing to more sophisticated traffic analysis. We primarily focus
on practical attacks that have been/could be employed by real-world

11

Proceedings on Privacy Enhancing Technologies YYYY(X) Seungju Lee, Mona Wang, Watson Jia, Qiang Wu, Henry Birge-Lee, Liang Wang, and Prateek Mittal

Proxy QUICstep/VPN QUICstep/Native

Default DNS
optimized Default DNS

optimized
Ireland 0.338 0.454 1.066 1.000

Frankfurt 0.340 0.438 1.328 0.997
Montreal 0.463 0.423 1.931 1.207
Ohio 0.458 0.449 1.847 1.175

Oregon 0.554 0.238 2.278 1.395
Seoul 0.586 0.282 4.920 2.949
Tokyo 0.682 0.301 3.842 2.444

Table 3: Ratio of QUICstep page load time to VPN and native
connections when DNS resolution is optimized, compared
to the default setup. Proxies are listed in order of distance
from the client. The client is in London and the proxies’ max-
imum throughput is 5Mbps. DNS optimization significantly
enhances QUICstep’s performance gain over VPN when the
proxy is far from the client (boldfaced).

censors, which are typically stateless as studied in [3, 70, 76]. We de-
fine a stateless attack as one that can be performed on a per-packet
basis without requiring information from two or more packets. For
example, QUIC SNI censorship can be stateless if the censor follows
the reference implementation provided by Google [25].

DNS blocking and SNI censorship. DNS blocking [4, 29] and SNI
censorship are two major techniques censors employ to censor
websites. QUICstep evades DNS blocking and QUIC-SNI blocking
as both DNS requests and QUIC Handshake packets are transmitted
through a secure and encrypted tunnel that is not censored.

IP address blocking. Some censors may adopt IP address block-
ing [15]. As discussed in §3.1, following prior work, QUICstep is
applicable to destinations whose IP addresses are not blocked. Cen-
sored domains can leverage non-blocked CDNs or cloud services
to circumvent IP address blocking. Note that QUICstep sometimes
helps circumvent IP address-based blocking. In QUICstep, DNS
requests are performed through a proxy located outside of the cen-
sored regime and may resolve to a different IP address that may
not be on the censor’s IP address blocklist [15].

The censor may also attempt to block the IP address of the hand-
shake channel provider. Handshake channel providers may remedy
this by not making the IP addresses public like Tor bridges or fre-
quently rotating IP addresses like Snowflake [11]. The design of
QUICstep also helps reduce the risk of handshake channel provider
IP addresses being identified compared to relying on VPNs for all
communication. One way to fingerprint VPN usage is identify-
ing when the client communicates predominantly over a single
IP address; this does not happen with QUICstep as the client also
communicates directly with the destination server.

Blocking all QUIC traffic. One attack strategy to counter QUIC-
step is to block all QUIC traffic. We argue that such an aggressive
strategy would lead to high collateral damage, which could be un-
desirable for censors, given the rapid increase in QUIC/HTTP3
deployment. For example, major cloud providers in China (Ali-
baba, Tencent, Huawei, etc.) all provide QUIC-based services, and

therefore blocking QUIC could negatively impact the revenue of
these Chinese companies. We noticed that Russia was suspected
of blocking QUIC traffic in 2022 during the early stage of QUIC de-
ployment [74]. This is likely because DPIs could not decrypt SNIs in
encrypted QUIC payloads at that time. However, as QUIC SNI detec-
tion techniques have matured and been integrated into commercial
DPI systems (e.g., Cisco [16]), it could incentivize nation-state cen-
sors to adopt QUIC SNI detection to minimize collateral damage. In
fact, recent evidence indicates that Russia has transitioned to using
QUIC SNI detection [69]. As discussed, QUICstep is an effective
approach to bypass QUIC SNI censorship.

Blocking all QUIC connection migrated traffic. Theoretically, a
censor could try to identify QUIC connection migration events and
block all migrated QUIC connections. A potential indicator of a
migrated connection is the absence of Handshake or Initial pack-
ets. However, such attacks face a significant challenge: QUICstep
migrations are indistinguishable from those triggered by typical
client mobility events in terms of traffic characteristics. One can
view QUICstep as a system that uses artificial mobility events to
trigger migration of native QUIC. There is no reliable way to differ-
entiate between “normal” migration and QUICstep migration on
a per-connection basis. Connection migration is likely to become
common in future mobile and vehicular networks, which is a key
consideration that inspired the design of QUIC’s connection migra-
tion feature. Therefore, simply blocking all migrated connections
may cause substantial collateral damage.

To evaluate the feasibility of censors dropping QUIC connections
that do not contain Handshake or Initial packets, we analyzed
QUIC traffic from a campus network collected for 24 hours on No-
vember 6th, 2022.5 Out of 3,786,050 unique QUIC connections,
1,100,439 (29.1%) did not contain a QUIC Initial nor a QUIC
Handshake packet. They are likely flows created from regular
connection migration activity.

Hypothetical case: Stateful traffic analysis. As a lightweight ap-
proach, QUICstep does not consider stateful traffic analysis and
makes no security claims against such attacks (e.g., detecting QUIC-
step based on the abnormal frequency of connection migration
events). Several deployed censorship circumvention tools also share
a similar limitation, e.g., some Tor pluggable transports and VPNs
can be fingerprinted via traffic analysis [2, 62, 63, 73, 75]. We ac-
knowledge that extensive research has been conducted on censor-
ship circumvention techniques that are robust against stateful traffic
analysis [5, 6, 12, 19, 24, 33, 46, 53]. However, we note that such
attacks are resource-intensive, as they require the censor to store
significantly more state information. Practical real-time DPIs still
favor lightweight detection mechanisms such as keyword match-
ing (Section 2.3.5). It remains an open question whether advanced
traffic analysis attacks against QUICstep can achieve the efficiency
required to meet real-time blocking goals of deployed censors.

5The network traces are anonymized and we have obtained IRB approval from our
institution. Refer to §7 for details.

12

QUICstep: Evaluating connection migration based QUIC censorship circumvention Proceedings on Privacy Enhancing Technologies YYYY(X)

6 Discussion and conclusion
In summary, QUICstep presents a promising direction for censor-
ship circumvention in a QUIC-first world. QUICstep successfully cir-
cumvents real-world censors and provides significant performance
gain compared to relying on a secure but resource constrained chan-
nel for all communication. QUICstep is particularly useful in that
it provides greater performance gain when the user fetches more
data per-connection (e.g. when accessing large websites; §4.4.6)
and when the user has limited resources (e.g. when the handshake
channel has low bandwidth; §4.4.5).

The application-agnostic nature of QUICstep enables it to be
integrated as part of existing censorship circumvention tools. Inte-
gration of QUICstep to existing proxy services can benefit providers
as QUICstep substantially reduces resource consumption of each
client. Our work also shows the current state of QUIC and connec-
tion migration support in the wild, and QUICstep can also be used
as a tool for evaluating connection migration support.

In this section, we discuss the path to large-scale QUICstep de-
ployment, for which the main bottleneck is the limited QUIC and
connection migration support in the current Internet.

Increasing QUIC support and adoption. Rüth et al. reported 1.2%
QUIC support among the Alexa top 1M list in October 2017 [49];
our results find over 22% QUIC support among the Tranco top 1M
list in November 2024.6 With the standardization of HTTP/3 and
the ongoing increase in QUIC deployment we envision that QUIC
will become the de facto norm for internet traffic [7, 61].

Increasing connection migration support and adoption. Our results
in §4.2 demonstrate that connection migration support is increas-
ing, but still does not extend to most QUIC-supporting websites. In
our tests, we found QUICstep is not only useful for censorship cir-
cumvention, but also for understanding whether and how websites
support QUIC connection migration. In this work, we provide the
most comprehensive measurement of QUIC connection migration
deployment to-date, differentiating between different types of sup-
port. We hope our work will be a driver for increased connection
migration support, and that service providers (e.g., Cloudflare) will
recognize the power of connection migration.

Standardizing a mechanism for advertising connection migration
support. Due to the gap between QUIC and QUIC connection mi-
gration support as highlighted in our measurements, clients need
to discover whether a host supports connection migration before
they can leverage its performance benefits. Clients currently have
no standard method for discovering connection migration support.
As demonstrated by our own measurements in addition to prior
work, it is not easy to reliably measure whether a website supports
connection migration. In addition, many websites support only port
or IP migration and not the other. The standardization of a method
for discovering connection migration support, perhaps within an
established QUIC channel, would allow all QUIC clients to bene-
fit from the performance benefits of connection migration. At the
moment, since it is nontrivial for clients to identify support for
connection migration, clients need to maintain a list of endpoints
that support connection migration.
6The 2017 result did not exclude 404 error pages. Including 404 error pages, our
numbers jump to around 30%.

Integrating QUICstep into usable deployments. In this work, we
demonstrate that implementing the core functionality QUICstep is
lightweight, and can be simplified to a number of packet-based rout-
ing rules. We suggest that with a mechanism for opportunistically
discovering QUIC and connection migration support, QUICstep
can be deployed as a standalone tool (e.g. packaged as an Android
VPN), or better yet, alongside existing censorship circumvention
tooling. The performance benefits of QUICstep also generalize to
reducing bandwidth usage of a highly-secure handshake channel,
which could be leveraged by existing circumvention software to
reduce load on volunteer (or otherwise limited) providers.

7 Ethical considerations
Censorship circumvention experiments. Our censorship circum-

vention experiments in §4.3 did not involve any human subjects. In
our measurements with the GFW, we used a client machine (under
our control) hosted at a large-scale commercial VPS provider with
a dedicated IP address. We accessed only a limited number of real-
world domains to avoid the client machine itself being blocked. We
ran a QUIC server under our control with different domain names
for further testing. We note that this was run on localhost such that
only our client machine (that knows the IP address of the QUIC
server) could access it.

Network trace analysis. To evaluate the collateral damage of
blocking all QUIC connection migrated traffic in §5, we analyzed
anonymized traces gathered from our campus network. Port 443
UDP traffic was captured by our campus network operator who
managed the tap, sanitized the traces, anonymized IP addresses and
source ports, and removed all protected payloads before releasing
the traces to us. The traces’ network storage was also managed by
our campus network operator and protected with restricted access.
These traces were used by other campus projects as well and we
did not have control over the lifetime of the data. We obtained IRB
approval from our institution to study this data and we did not
perform any analysis beyond the aggregate statistic presented in
the paper.

Acknowledgments
We are grateful to anonymous reviewers for their helpful feed-
back. This material is based on work supported by the Defense
Advanced Research Project Agency (DARPA) under contract no.
HR00112590081. Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the authors, and do
not necessarily reflect the views of the sponsors.

References
[1] OONI: Open Observatory of Network Interference. In 2nd USENIX Workshop on

Free and Open Communications on the Internet (FOCI 12), Bellevue, WA, August
2012. USENIX Association.

[2] Sultan Almutairi, Yogev Neumann, and Khaled Harfoush. Fingerprinting vpns
with custom router firmware: A new censorship threat model. In 2024 IEEE 21st
Consumer Communications & Networking Conference (CCNC), pages 976–981.
IEEE, 2024.

[3] Anonymous and Amonymous. Sharing a modified Shadowsocks as well as our
thoughts on the cat-and-mouse game, October 2022.

[4] Anonymous, Arian Akhavan Niaki, Nguyen Phong Hoang, Phillipa Gill, and Amir
Houmansadr. Triplet censors: Demystifying Great Firewall’s DNS censorship
behavior. In Free and Open Communications on the Internet. USENIX, 2020.

13

Proceedings on Privacy Enhancing Technologies YYYY(X) Seungju Lee, Mona Wang, Watson Jia, Qiang Wu, Henry Birge-Lee, Liang Wang, and Prateek Mittal

[5] Diogo Barradas, Nuno Santos, and Luís Rodrigues. DeltaShaper: Enabling un-
observable censorship-resistant TCP tunneling over videoconferencing streams.
Proceedings on Privacy Enhancing Technologies, 2017(4):5–22, 2017.

[6] Diogo Barradas, Nuno Santos, Luís Rodrigues, and Vítor Nunes. Poking a hole in
the wall: Efficient censorship-resistant Internet communications by parasitizing
on WebRTC. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pages 35–48, 2020.

[7] David Belson and Lucas Pardue. Examining HTTP/3 usage one year on, June
2023.

[8] M Bishop. RFC 9114: HTTP/3, 2022.
[9] Kevin Bock, George Hughey, Xiao Qiang, and Dave Levin. Geneva: Evolving

Censorship Evasion Strategies. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’19, page 2199–2214, New York,
NY, USA, 2019. Association for Computing Machinery.

[10] Kevin Bock, iyouport, Anonymous, Louis-Henri Merino, David Fifield, Amir
Houmansadr, and Dave Levin. Exposing and circumventing china’s censorship
of esni. Technical report, GFW Report, August 2020.

[11] Cecylia Bocovich, Arlo Breault, David Fifield, Serene, and Xiaokang Wang.
Snowflake, a censorship circumvention system using temporary WebRTC prox-
ies. In 33rd USENIX Security Symposium (USENIX Security 24), pages 2635–2652,
Philadelphia, PA, August 2024. USENIX Association.

[12] Chad Brubaker, Amir Houmansadr, and Vitaly Shmatikov. Cloudtransport: Using
cloud storage for censorship-resistant networking. In International Symposium
on Privacy Enhancing Technologies Symposium, pages 1–20. Springer, 2014.

[13] Aurélien Buchet and Cristel Pelsser. An analysis of QUIC connection migration
in the wild, 2024.

[14] Cormac Callanan, Hein Dries-Ziekenheiner, Alberto Escudero-Pascual, and
Robert Guerra. Leaping over the firewall: A review of censorship circumvention
tools. Report by Freedom House, 2011.

[15] Zimo Chai, Amirhossein Ghafari, and Amir Houmansadr. On the importance of
encrypted-SNI (ESNI) to censorship circumvention. In Free and Open Communi-
cations on the Internet. USENIX, 2019.

[16] Cisco. Support for SNI Detection, unknown.
[17] Cloudflare. 1.1.1.1 (DNS Resolver) FAQ, 2024.
[18] Arjun Devraj, Liang Wang, and Jennifer Rexford. Redact: refraction networking

from the data center. ACM SIGCOMM Computer Communication Review, 51(4):15–
22, 2021.

[19] Kevin PDyer, Scott E Coull, and Thomas Shrimpton. Marionette: A programmable
network traffic obfuscation system. In 24th {USENIX} Security Symposium
({USENIX} Security 15), pages 367–382, 2015.

[20] The eBPF Foundation. eBPF Documentation, 2024.
[21] Kathrin Elmenhorst. A Quick Look at QUIC Censorship, Apr 2022.
[22] Kathrin Elmenhorst, Bertram Schütz, Nils Aschenbruck, and Simone Basso. Web

censorship measurements of HTTP/3 over QUIC. In Proceedings of the 21st ACM
Internet Measurement Conference, pages 276–282, 2021.

[23] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson.
Blocking-resistant communication through domain fronting. Proceedings on
Privacy Enhancing Technologies, 2015.

[24] Gabriel Figueira, Diogo Barradas, and Nuno Santos. Stegozoa: Enhancing Web-
RTC Covert Channels with Video Steganography for Internet Censorship Cir-
cumvention. In Proceedings of the 2022 ACM on Asia Conference on Computer and
Communications Security, pages 1154–1167, 2022.

[25] Google. Parsing QUIC Client Hellos, 2021.
[26] Google. QUICHE. https://quiche.googlesource.com/quiche/, 2022.
[27] Yashodhar Govil, Liang Wang, and Jennifer Rexford. MIMIQ: Masking IPs with

migration in QUIC. In 10th USENIX Workshop on Free and Open Communications
on the Internet (FOCI), 2020.

[28] Nguyen Phong Hoang, Jakub Dalek, Masashi Crete-Nishihata, Nicolas Christin,
Vinod Yegneswaran, Michalis Polychronakis, and Nick Feamster. GFWeb: Measur-
ing the Great Firewall’s Web censorship at scale. In USENIX Security Symposium.
USENIX, 2024.

[29] Nguyen Phong Hoang, Arian Akhavan Niaki, Jakub Dalek, Jeffrey Knockel, Pel-
laeon Lin, Bill Marczak, Masashi Crete-Nishihata, Phillipa Gill, and Michalis
Polychronakis. How great is the Great Firewall? Measuring China’s DNS censor-
ship. In USENIX Security Symposium. USENIX, 2021.

[30] Amir Houmansadr, Thomas J Riedl, Nikita Borisov, and Andrew C Singer. I
want my voice to be heard: IP over Voice-over-IP for unobservable censorship
circumvention. In NDSS, 2013.

[31] Hysteria developers. Hysteria.
[32] Jana Iyengar and Martin Thomson. RFC 9000: QUIC: A UDP-Based Multiplexed

and Secure Transport. Omtermet Emgomeeromg Task Force, 2021.
[33] Watson Jia, Joseph Eichenhofer, Liang Wang, and Prateek Mittal. Voiceover:

Censorship-circumventing protocol tunnels with generative modeling. Free and
Open Communications on the Internet, 2023.

[34] Lin Jin, Shuai Hao, Haining Wang, and Chase Cotton. Understanding the impact
of encrypted DNS on internet censorship. In Proceedings of the Web Conference
2021, pages 484–495, 2021.

[35] Sedat Kappanoğlu. turkish ISPs use two methods for blocking access... https:
//twitter.com/esesci/status/1630024112071491586.

[36] Lantern. Lantern - Frequently Asked Questions.
[37] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-

rczyński, and Wouter Joosen. Tranco: A research-oriented top sites ranking
hardened against manipulation. In Proceedings of the 26th Annual Network and
Distributed System Security Symposium, NDSS 2019, February 2019.

[38] Jinseo Lee, David Mohaisen, and Min Suk Kang. Measuring dns-over-https
downgrades: Prevalence, techniques, and bypass strategies. Proceedings of the
ACM on Networking, 2(CoNEXT4):1–22, 2024.

[39] Victoria Manfredi and Pi Songkuntham. MultiFlow: Cross-Connection decoy
routing using TLS 1.3 session resumption. In 8th USENIX Workshop on Free and
Open Communications on the Internet (FOCI 18), Baltimore, MD, August 2018.
USENIX Association.

[40] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian
Goldberg. Skypemorph: Protocol obfuscation for tor bridges. In Proceedings of
the 2012 ACM conference on Computer and communications security, pages 97–108,
2012.

[41] Milad Nasr, Hadi Zolfaghari, Amir Houmansadr, and Amirhossein Ghafari. Mass-
browser: Unblocking the censored web for the masses, by the masses. In NDSS,
2020.

[42] Niklas Niere, Felix Lange, Nico Heitmann, and Juraj Somorovsky. Encrypted
client hello (ech) in censorship circumvention. Free and Open Communications
on the Internet, 2025.

[43] Tor Project. meek, 2020.
[44] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC

8446, August 2018.
[45] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. TLS En-

crypted Client Hello. Internet-Draft draft-ietf-tls-esni-25, Internet Engineering
Task Force, June 2025. Work in Progress.

[46] Marc B Rosen, James Parker, andAlex JMalozemoff. Balboa: Bobbing andweaving
around network censorship. In 30th USENIX Security Symposium (USENIX Security
21), pages 3399–3413, 2021.

[47] Zach Rosson, Felicia, Carolyn Tackett, andMeabhMaguire. Lives on hold: internet
shutdowns in 2024, February 2025.

[48] Shadowsocks rust developers. Shadowsocks-rust.
[49] Jan Rüth, Ingmar Poese, Christoph Dietzel, and Oliver Hohlfeld. A first look at

quic in the wild. In Passive and Active Measurement: 19th International Conference,
PAM 2018, Berlin, Germany, March 26–27, 2018, Proceedings 19, pages 255–268.
Springer, 2018.

[50] Sambhav Satija and Rahul Chatterjee. BlindTLS: Circumventing TLS-based
HTTPS censorship. In Free and Open Communications on the Internet. ACM, 2021.

[51] Shadowsocks developers. Shadowsocks.
[52] Sing-box developers. Sing-box.
[53] Zhen Sun and Vitaly Shmatikov. Telepath: A minecraft-based covert commu-

nication system. In 2023 IEEE Symposium on Security and Privacy (SP), pages
2223–2237. IEEE, 2023.

[54] Ram Sundara Raman, Prerana Shenoy, Katharina Kohls, and Roya Ensafi. Cen-
sored Planet: An Internet-Wide, Longitudinal Censorship Observatory. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’20, page 49–66, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[55] Ram Sundara Raman, Adrian Stoll, Jakub Dalek, Reethika Ramesh, Will Scott,
and Roya Ensafi. Measuring the Deployment of Network Censorship Filters at
Global Scale. In NDSS, 2020.

[56] The Tor Project. Tor metrics - performance, 2024.
[57] Martin Thomson and Sean Turner. Using TLS to Secure QUIC. RFC 9001, May

2021.
[58] Lindsey Tulloch. Lox: Protecting the social graph in bridge distribution. Master’s

thesis, University of Waterloo, 2022.
[59] V2Ray developers. V2Ray.
[60] Paul Vines, Samuel McKay, Jesse Jenter, and Suresh Krishnaswamy. Commu-

nication breakdown: Modularizing application tunneling for signaling around
censorship. Privacy Enhancing Technologies, 2024(1), 2024.

[61] W3Techs. Usage statistics of http/3 for websites, May 2025.
[62] Ryan Wails, George Arnold Sullivan, Micah Sherr, and Rob Jansen. On precisely

detecting censorship circumvention in real-world networks. In Network and
Distributed System Security, 2024.

[63] Liang Wang, Kevin P Dyer, Aditya Akella, Thomas Ristenpart, and Thomas
Shrimpton. Seeing through network-protocol obfuscation. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, pages
57–69, 2015.

[64] Mona Wang, Anunay Kulshrestha, Liang Wang, and Prateek Mittal. Leveraging
strategic connection migration-powered traffic splitting for privacy. In Proceed-
ings on Privacy Enhancing Technologies, page 498–515, 2022.

[65] Qiyan Wang, Zi Lin, Nikita Borisov, and Nicholas Hopper. rbridge: User reputa-
tion based tor bridge distribution with privacy preservation. In NDSS, 2013.

[66] Jon Watson. How to Use Psiphon The Censorship-Circumvention Tool, 2021.

14

https://quiche.googlesource.com/quiche/
https://twitter.com/esesci/status/1630024112071491586
https://twitter.com/esesci/status/1630024112071491586

QUICstep: Evaluating connection migration based QUIC censorship circumvention Proceedings on Privacy Enhancing Technologies YYYY(X)

[67] Mingkui Wei. Domain shadowing: Leveraging content delivery networks for
robust Blocking-Resistant communications. In 30th USENIX Security Symposium
(USENIX Security 21), pages 3327–3343. USENIX Association, August 2021.

[68] Mike Williams. Pshiphon review, 2020.
[69] wkrp. Throttling→blocking of YouTube in Russia, 2024-07-12, 2024.
[70] Mingshi Wu, Jackson Sippe, Danesh Sivakumar, Jack Burg, Peter Anderson,

Xiaokang Wang, Kevin Bock, Amir Houmansadr, Dave Levin, and Eric Wustrow.
How the Great Firewall of China detects and blocks fully encrypted traffic. In
USENIX Security Symposium. USENIX, 2023.

[71] XRay developers. XRay.
[72] Diwen Xue, Anna Ablove, Reethika Ramesh, Grace Kwak Danciu, and Roya

Ensafi. Bridging barriers: A survey of challenges and priorities in the censorship
circumvention landscape. In 33rd USENIX Security Symposium (USENIX Security
24), pages 2671–2688, Philadelphia, PA, August 2024. USENIX Association.

[73] DiwenXue,Michalis Kallitsis, Amir Houmansadr, and Roya Ensafi. Fingerprinting
obfuscated proxy traffic with encapsulated {TLS} handshakes. In 33rd USENIX
Security Symposium (USENIX Security 24), pages 2689–2706, 2024.

[74] Diwen Xue, Benjamin Mixon-Baca, ValdikSS, Anna Ablove, Beau Kujath, Je-
didiah R Crandall, and Roya Ensafi. Tspu: Russia’s decentralized censorship
system. In Proceedings of the 22nd ACM Internet Measurement Conference, pages
179–194, 2022.

[75] Diwen Xue, Reethika Ramesh, Arham Jain, Michaelis Kallitsis, J Alex Halderman,
Jedidiah R Crandall, and Roya Ensafi. OpenVPN is open to VPN fingerprinting.
Communications of the ACM, 2022.

[76] Ali Zohaib, Qiang Zao, Jackson Sippe, Abdulrahman Alaraj, Amir Houmansadr,
Zakir Durumeric, and Eric Wustrow. Exposing and circumventing SNI-based
QUIC censorship of the Great Firewall of China. In USENIX Security Symposium.
USENIX, 2025.

A Additional performance evaluations

15

Proceedings on Privacy Enhancing Technologies YYYY(X) Seungju Lee, Mona Wang, Watson Jia, Qiang Wu, Henry Birge-Lee, Liang Wang, and Prateek Mittal

Client Proxy Max throughput
1 Mbps

Max throughput
5 Mbps

Max throughput
10 Mbps No rate limit

Ireland 0.069 0.338 0.510 0.996
Frankfurt 0.070 0.340 0.616 0.898
Montreal 0.072 0.463 0.738 1.052

London Ohio 0.088 0.458 0.588 0.996
Oregon 0.088 0.554 0.860 1.071
Seoul 0.128 0.586 0.633 0.765
Tokyo 0.124 0.682 0.976 1.553
Tokyo 0.079 0.269 0.449 0.971
Seoul 0.079 0.319 0.511 0.868
Oregon 0.095 0.476 0.740 1.027

Osaka Frankfurt 0.255 0.719 1.015 1.273
Ireland 0.223 0.811 1.293 1.183
Montreal 0.136 0.560 0.752 1.002
Ohio 0.134 0.519 0.751 0.965

Montreal 0.140 0.876 0.956 0.963
Ohio 0.147 0.882 0.977 0.973

Oregon 0.156 0.895 0.932 1.010
New Jersey Ireland 0.210 0.921 1.194 1.065

Frankfurt 0.213 0.952 1.216 1.174
Tokyo 0.236 0.951 1.032 1.117
Seoul 0.265 0.750 0.834 0.776

Table 4: Ratio of QUICstep page load time to VPN page load time with different client locations, proxy locations, and proxy rate
limits. For each client location the proxies are listed in order of geographical distance from the client.

Rate
limit

Website
size Native (ms) VPN (ms) QUICstep (ms) QUICstep /VPN QUICstep /Native QUICstep -

Native (ms)
10 KB 98.97 926.26 790.41 0.853 7.986 691.44

5Mbps 100 KB 145.11 1411.53 837.77 0.594 5.773 692.66
1MB 277.4 3128.94 971.22 0.310 3.501 693.82
10MB 1272.28 18894.73 1962.12 0.104 1.542 689.84
10 KB 97.22 928.26 791.27 0.852 8.139 694.05

10Mbps 100 KB 138.41 1409.3 830.78 0.589 6.002 692.37
1MB 262.29 2559.01 956.57 0.374 3.647 694.28
10MB 1040.3 10431.35 1737.8 0.167 1.670 697.50
10 KB 104.99 924.11 790.55 0.855 7.530 685.56

None 100 KB 157.57 1404.99 844.25 0.601 5.358 686.68
1MB 351.62 2413.92 1038.42 0.430 2.953 686.80
10MB 999.588 3875.32 1674.96 0.432 1.676 675.37

Table 5: Latency (ms) with different rate limits and website sizes.

16

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Censorship of QUIC traffic
	2.2 QUIC connection migration for privacy
	2.3 Related work

	3 Bringing QUICstep from theory to practice
	3.1 Threat model
	3.2 Implementation

	4 Evaluation
	4.1 Research questions and overview
	4.2 QUICstep support: measuring compatible websites in the wild
	4.3 Effectiveness: practical censorship circumvention with QUICstep
	4.4 Performance evaluation

	5 Potential attacks against QUICstep
	6 Discussion and conclusion
	7 Ethical considerations
	Acknowledgments
	References
	A Additional performance evaluations

